
www.ietdl.org

Published in IET Control Theory and Applications
Received on 3rd January 2012
Revised on 6th April 2013
Accepted on 10th April 2013
doi: 10.1049/iet-cta.2012.0003

ISSN 1751-8644

Network-based precise tracking control of systems
subject to stochastic failure and non-zero input
Zhou Gu1, EngangTian2, Jinliang Liu3, Lei Huang1, Hongyan Zou1, Yaqin Zhao1

1College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037,
People’s Republic of China
2School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210042,
People’s Republic of China
3 Department of Applied Mathematics, Nanjing University of Finance and Economics, Nanjing 210046,
People’s Republic of China
E-mail: gzh1808@163.com

Abstract: This study deals with the problem of reliable precise tracking control for the networked control system with
non-zero external inputs (NEIs). A new control scheme is developed by introducing an integral item in the control law and
taking stochastic actuator failure (SAF) into account, by which a better steady tracking performances can be achieved. Based
on Lyapunov theory, a reliable control design method that guarantees the network-based tracking control systems with zero
steady-state error in the conditions of both NEIs and SAFs is designed. Simulation results demonstrate the effectiveness of
the developed controller design scheme.
1 Introduction

With the rapid development of network technologies, more
and more control systems are implemented over communi-
cation networks, which is called networked control system
(NCS). In the past few decades, much attention has been
drawn to the researches on the stability and stabilisation
of the NCS for its predominant advantages (such as low
cost, reduced weight and power requirements, simple instal-
lation and maintenance and high reliability). Considerable
attention and effort have been paid to its challenging issue
(such as network-induced delay, packet losses); see [1–5]
and reference their in.

Since tracking control has wide applications in dynamic
process, such as remote robot control, flight control, pro-
cessing control, etc., however, it is hard to achieve a good
tracking control performance by using classic controller
when the control signal is transmitted via a network. There-
fore the network-based tracking control system (NTCS) has
drawn a great deal of interest to the researchers [6–10] so
far. The objective of the tracking control for the designers is
to drive the output of the plant to follow the predefined tra-
jectory precisely when the system is under external inputs.
In comparison with the problem of stabilisation control, the
tracking control is therefore relatively difficult to handle
[9, 11], especially for the NTCS. The existed approach on
tracking control is mainly focused on adaptive control meth-
ods [7, 12] and H∞ control technologies [6, 9]. However,
in practise, it may waste a large amount of CPU resources,
and it even leads to non-real-time control; while using H∞
control technology, generally, requires the external inputs
1370
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belonging to the set of l2[0 ∞). Although it can achieve a
certain H∞ disturbance attenuation level, it is hard to meet
the practical requirement, since either the input of the ref-
erence model or the external disturbance does not belong
to the set l2[0 ∞) in most cases. Moreover, it should be
pointed out that there exists a big steady-state error (SSE)
when the inputs of the system are of non-zero external inputs
(NEIs) by using H∞ design method, that is, the capability of
disturbance rejection for this method is weak. To the best
of our knowledge, unfortunately, few works pay attention
to the steady tracking performances (STP) of the NTCS,
although the problem of STP should be concerned primar-
ily for the tracking control systems. This motivates us the
present study.

In most practical control systems, components’ failure
(including sensors, actuators and even the plant itself) may
occur at an uncertain time. The fault may lead to the per-
formance of the system deterioration or even the instability.
Fault tolerance means the ability of the system maintain-
ing its stability and performance in spite of unknown faults
within the system. Therefore fault-tolerant control can guar-
antee the system stability not only during normal operations
but also under an abnormal situation, which is especially
important for precise tracking control systems. The existed
results on the fault components mainly focus on a certain
case [13] (completely failure or partly failure) or a class of
uncertain case [14–16] (fault varying within a known inter-
val). Very few works study the case of components of the
system that are subject to a certain stochastic failure.

In this paper, we aim to develop a fault-tolerant controller
for NTCS with both stochastic actuator failures (SAFs) and
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NEIs. The main contributions of the paper are as follows.
First, a new control scheme is developed by introducing an
integral item to remove the offsets between the output of
the plant and the output of the reference model when the
system is of non-zero input, that is, the system have an
excellent STP by using the proposed control law when the
system is of non-zero input. Second, a stochastic actuator
fault model described by a rand matrix is established, which
reflects the real actuator fault closely and covers several
classes of well-studied models. Finally, a reliable control
design method for such NTCS is developed in terms of linear
matrix inequalities (LMIs), such that the NTCS has a good
STP in conditions of both NEIs and SAFs.

The remainder of the paper is organised as follows. The
problem formulation is given in Section 2. The reliable
control design method is provided in Section 3. Section 4
presents the design results and simulations. Finally, the
study’s findings are summarised in Section 5.

Notation: Rn denotes the n-dimensional Euclidean space;
Rn×m is the set of real n × m matrices; I is the identity matrix
of appropriate dimensions; ‖ · ‖ stands for the Euclidean
vector norm or spectral norm as appropriate. The notation
X > 0 (respectively, X < 0), for X ∈ Rn×n means that the
matrix X is a real symmetric positive definite (respectively,
negative definite); when x is a stochastic variable, E{x}
stands for the expectation of x; the asterisk ∗ in a matrix
is used to denote term that is induced by symmetry.

2 Problem formulation

As shown in Fig. 1, our aim in this paper is to design a
controller such that the output of the plant tracks the trajec-
tory of output of the reference model when the system with
NEIs and SAFs.

Suppose the physical plant model is given by a linear
discrete-time system

x(k + 1) = Ax(k) + BuF(k) + Bωω(k) (1)

y(k) = Cx(k) (2)

where x(k) ∈ Rn is the state vector, uF(k) ∈ Rm is the
control input subject to SAFs, y(k) ∈ Rq is the output vector.

Fig. 1 Schematic diagram of NTCS
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A, B, Bω and C are system matrices with appropriate dimen-
sions, and ω(k) is a non-zero disturbance, which takes the
form of

lim
k→∞

ω(k) = c (3)

where c is an unknown non-zero constant.
The tracked plant is represented by the following refer-

ence model

xr(k + 1) = Arxr(k) + Brr(k) (4)

yr(k) = Crxr(k) (5)

where xr(k) ∈ Rnr is the reference state, yr(k) ∈ Rnq is the
output vector with a same dimension of y(k), r(k) ∈ Rnr is
the reference input vector. Ar is a specified asymptotically
stable matrix, Br and Cr are known matrices with appropriate
dimensions.

To facilitate theoretical development, we make the fol-
lowing assumptions for the NTCS.

Assumption 1: Sensors are clock-driven, while actuators and
controller are event-driven, moreover the clocks among all
the devices are synchronised.

Assumption 2: As shown in Fig. 1, the signals of x(k), xr(k)
and e(k) transmitted with a signal packet are online measur-
able.

In order to track the specific signal with an excellent
steady-state performance, the following controller law is
proposed

u(k) = K1x(ik) + K2xr(ik)

+ K3

ik −1∑
s=0

e(s) �τk + ik� ≤ k ≤ �τk+1 + ik+1� (6)

where Ki(i = 1, 2, 3) are the controller gains to be deter-
mined. e(k) = y(k) − yr(k). τk is the network-induced delay,
and ik is the kth sampling instant at sensor side. The set
{i1, i2, . . . , } is a subset of the set {1, 2, . . .}. If ik+1 ≥ ik + 1,
it means that some packets are lost. For example, as is
shown in Fig. 2, the packet at k = 6 is lost, and wrong
sequence occurs between k = 3 and 4, then the packet at
k = 3 is discarded. The controller uses the effective packets
in Fig. 2 at k = 2, 4, 5, 7 are in the intervals I1, I2, I3 and
I4, respectively. Obviously ∪∞

i=0Ii = [k0, ∞), where k0 is an
integer.

Define dk = k − ik , it leads to

0 < τk ≤ dk ≤ �τk+1 + (ik+1 − ik)� ≤ dM (7)

Then (6) can be written as

u(k) = K1x(k − dk) + K2xr(k − dk) + K3

k−dk −1∑
s=0

e(s) (8)

Remark 1: Supposing the physical system (1) is stable, one
can see that the actuator will keep working till the error
between y(k) and yr(k) reduces to zero, because if the error
is non-zero, the control force will be further strengthen over
time because of the integrated item in (6). Therefore, a better
STP can be obtained by using this control scheme in com-
parison with using a simple static state feedback controller
or static output feedback controller.
1371
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For technical convenience, here we construct a new state
variable xv(k) ∈ Rnv as follows

xv(k + 1) = xv(k) + e(k) (9)

xv(k) = 0, −dM ≤ k ≤ 0 (10)

Recalling the definition of e(k), we have

xv(k + 1) = xv(k) + Cx(k − dk) − Crxr(k − dk) (11)

k−dk −1∑
i=0

e(s) = xv(k − dk) (12)

Then (8) can be further rewritten as

u(k) = K1x(k − dk) + K2xr(k − dk) + K3xv(k − dk) (13)

Here we proposed a stochastic actuator fault model as

uF(k) = �u(k) (14)

where � = diag{θ1, θ2, . . . , θm} is a rand matrix, and θi with
its expectation θ̄i and variance σi (i ∈ {1, 2, . . . , m} � �),
respectively, denotes the stochastic failure in each channels
of the actuators.

Remark 2: The physically means of the actuator fault can
be reflected more closely by (14) whose idea is borrowed
from the model of missing measurement in [17]. Moreover,
the stochastic actuator fault model in (14) covers several
class of well-studied actuator failure model. For example,
if one let θi ≡ 0 or θi ≡ 1(i ∈ �), it means the actuator in
each channels is complete failure or intactness, respectively
[13, 18]. While θi ∈ (0 1)(i ∈ �), it denotes the actuator is
of partial failure [16, 19].

Combining (1), (4), (9), (13) and (14), we can obtain the
following augmented closed-loop system

ξ(k + 1) = Āξ(k) + Ãdξ(k − dk) + B̄v(k) (15)

where Ā =
[

A 0 0
0 Ar 0
0 0 I

]
, Ãd =

[
B�K1 B�K2 B�K3

0 0 0
C −Cr 0

]
,

ξ(k) =
[

x(k)
xr(k)
xv(k)

]
, v(k) =

[
ω(k)
r(k)

0

]
, B̄ = diag{Bω, Br , 0}.
1372
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3 Fault-tolerant control design

In this section, our main interest is to develop a fault-tolerant
controller such that the output of the plant y can track
the specific trajectory yr with an excellent STP under the
conditions of both NEIs and SAFs.

3.1 Analysis of stability for NTCS

As is stated in Remark 1, if the system is stable, it gives
rise to a good tracking performance thanks to the proposed
controller in (14). Hence, in this subsection, we will develop
a criteria of asymptotic stability for the closed-loop NTCS
with v(k) ≡ 0 firstly.

For the sake of technical simplicity, we rewrite (15) with
v(k) = 0 as

ξ(k + 1) = Aη(k) + Ãη(k) (16)

η(k) = ϕ(k) − dM ≤ k ≤ 0 (17)

where A = [Ā Ād 0], Ã = [0 Âd 0], η(k) = [ξ T (k) ξ T

(k − dk) ξ T (k − dM )]T, and

Ād =
⎡
⎣B�̄K1 B�̄K2 B�̄K3

0 0 0
C −Cr 0

⎤
⎦ , �̄ = E{�}

Âd =
⎡
⎣B(� − �̄)K1 B(� − �̄)K2 B(� − �̄)K3

0 0 0
0 0 0

⎤
⎦

Before starting our main results, we first introduce the
following definition and lemma.

Definition 1: System (16) is said to be mean-square asymp-
totically stable (MSAS), if there exists a scalar ε > 0, such
that

E

{ ∞∑
k=0

‖η(k)‖2

}
≤ εE{‖ϕ(k)‖2} (18)

Lemma 1 [20]: For symmetric positive-definite matrix R ∈
Rn×n, a function 0 ≤ dk ≤ dM and a vector function ξ(k) ∈
Rn, ς(k) = ξ(k + 1) − ξ(k), such that the following integra-
tion is well defined, it holds that

−dM

k−1∑
i=k−dM

ςT (i)Rς(i) ≤ ηT (k)

[−R ∗ ∗
R −2R ∗
0 R −R

]
η(k)

(19)

where η(k) = [ξ T (k) ξ T (k − dk) ξ T (k − dM )]T.
IET Control Theory Appl., 2013, Vol. 7, Iss. 10, pp. 1370–1376
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Theorem 1: For given matrix �̄ and scalars σi(i ∈ �),
system (16) is said to be MSAS if there exist matri-
ces P > 0, Q > 0, R > 0 and Kj(j = 1, 2, 3) with appropriate
dimensions, such that

� =
⎡
⎣�11 ∗ ∗

�21 −�22 ∗
ĀF 0 −�33

⎤
⎦ < 0 (20)

holds, where

�11 =
[−P + Q − R ∗ ∗

R −2R ∗
0 R −Q − R

]

�21 = [
AT dM ÂT

]T
, �22 = diag{P−1, R−1}

�33 = diag{P−1, . . . , P−1︸ ︷︷ ︸
m

, R−1, . . . , R−1︸ ︷︷ ︸
m

}

Â = [
(Ā − I ) Ād 0

]
,

ĀF =
[

1
dM

ĀT
dF1

· · · 1
dM

ĀT
dFm

, ĀT
dF1

· · · ĀT
dFm

]T

ĀdFi
= [

0 σidM AdFi 0
]

(i ∈ �)

AdFi =
[

BFiK1 BFiK2 BFiK3

0 0 0
0 0 0

]
(i ∈ �)

Proof: Defining Fi = diag{0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
m−i

}, and taking

the definition of � in (14) into consideration, one can easily
know that

E{Ã} = 0 (21)

E{ÂT
d 
Âd} =

m∑
i=1

σ 2
i AT

dFi

AdFi (22)

where 
 is a symmetrical positive-definite matrix.
Let us define a Lyapunov function for system (16) as

V (k) = ξ T (k)Pξ(k) +
k−1∑

i=k−dM

ξ T (i)Qξ(i)

+ dM

−1∑
i=−dM

k−1∑
j=k+i

ςT (j)Rς(j) (23)

where ς(k) = ξ(k + 1) − ξ(k), Combining (21) and (22)
and Lemma 1, we have (see equation at the bottom of the
page)

Recalling (20) and using Schur complement, there exists
a constant ι > 0, such that

E{�V (k)} ≤ −ιE{ηT (k)η(k)} ≤ −ιE{ξ T (k)ξ(k)} (24)
IET Control Theory Appl., 2013, Vol. 7, Iss. 10, pp. 1370–1376
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Since ∪∞
k=1[τk + ik , τk+1 + ik+1] = (0, ∞), we have

E

{ ∞∑
k=0

ξ T (k)ξ(k)

}
≤ ι−1

E{V (0)} (25)

From the construction of V (k), we can conclude that there
exists a constant ε > 0, such that

E{V (0)} ≤ ιεE{ϕT (k)ϕ(k)} (26)

Based on the definition of the MSAS, the proof is completed.
�

3.2 Analysis of STP with consideration of NEIs

According to (9), we have

lim
k→∞

E{xv(k + 1)} = lim
k→∞

E{(xv(k) + e(k))} (27)

Theorem 1 gives the condition of MSAS for the augmented
system (16), which means the subsystem (9) is also MSAS
if (20) holds. Under this condition, we have

lim
k→∞

E{xv(k + 1)} = lim
k→∞

E{xv(k)} (28)

It is obviously that

lim
k→∞

E{e(k)} = 0 (29)

Recalling the definition of e(k), one can easily know from
(29) that the steady requirement of tracking control can
be achieved by using the controller (14) even though the
disturbance is a NEI.

Remark 3: In fact, the controller (8) is a combination of
state- and output-feedback control, moreover, it borrows the
ideas of the proportional-integral (PI) control in the classic
control theory, that is, the last item of (8) can let the systems
produce zero SSE.

3.3 Controller design for NTCS

The stability condition of NTCS is given in Theorem 1,
however, the controller parameters (14) cannot be obtained
directly by using LMI toolbox because of the matrices
P, P−1, R and R−1 existed in the same inequality (20). The
following iterative algorithm [21] is used to find the feasible
solution.

Algorithm:
Step 1: Introduce two new variables U and V , then replace
P−1 and R−1 with those two matrices in (20), respectively.
se; O
A

 articles are governed by the applicable C
E{�V (k)} ≤ E

{
ξ T (k)(−P + Q)ξ(k) − ξ T (k − dM )Qξ(k − dM ) + ηT (k)AT PAη(k) + d2

M ηT (k)ÂT RÂη(k)

+ ηT (k)

[−R ∗ ∗
R −2R ∗
0 R −R

]
η(k) +

m∑
i=1

ξ T (k − dk)A
T
dFi

(σ 2
i P + d2

M σ 2
i R)AdFiξ(k − dk)

}
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A new matrix is defined by �̄. The condition (20) then turns
to {

�̄ < 0
PU = RV = I

(30)

Step 2: Find a feasible solution P0, R0, S0, T0 to LMI (31),
set κ = 0. ⎧⎨

⎩
�̄ < 0[

P ∗
I U

]
≥ 0,

[
R ∗
I V

]
≥ 0

(31)

Step 3: Solve the following LMI problem for the variables
P, R, U , V{

min Trace(PκU + RκV + UκP + VκR)

subject to LMI in (31)
(32)

Step 4: Select a small enough �(� > 0), if (33) is satisfied,
the fault-tolerant controller could be obtained, else if κ is
less than a specified iterative times, set κ = κ + 1, go to
Step 2, otherwise, it means no feasible solution could be
found, EXIT.

|Trace(PκU + RκV + UκP + VκR) − n − nr − nv| ≤ �
(33)

4 A numerical example

In this section, the proposed reliable tracking control method
is applied to a satellite system whose output follows a
specific trajectory over network environment. Consider the
following continuous-time plant [6]

ẋ(t) =
⎡
⎢⎣

0 0 1 0
0 0 0 1

−0.09 0.09 −0.04 0.04
0.09 −0.09 0.04 0.04

⎤
⎥⎦ x(t)

+
⎡
⎢⎣

0
0
1
0

⎤
⎥⎦ u(t) +

⎡
⎢⎣

0
0
0
1

⎤
⎥⎦ ω(t) (34)

y(t) = [
0 1 0 0

]
x(t) (35)

and the continuous-time reference model is

ẋr(t) = −xr(t) + r(t) (36)

yr(t) = 0.5xr(t) (37)

As shown in Fig. 1, the signals are transmitted via commu-
nication network with a sampling period 0.5 s. By discretis-
ing the above continuous-time systems, we can obtain the
1374
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Fig. 3 Trajectory of ω(k)

parameters in (1) as follows

A =
⎡
⎢⎣

0.9889 0.0111 0.4932 0.0068
0.0111 0.9889 0.0068 0.4932

−0.0438 0.0438 0.9695 0.0305
0.0438 −0.0438 0.0305 0.9695

⎤
⎥⎦

B =
⎡
⎢⎣

0.1239
0.0011
0.4932
0.0068

⎤
⎥⎦ , Bω =

⎡
⎢⎣

0
0
0
1

⎤
⎥⎦

and the discretised reference model is

xr(k + 1) = 0.6065xr(k) + 0.3935r(k) (38)

yr(k) = 0.5xr(k) (39)

We assume 0 ≤ dk ≤ 2, and the disturbance ω(k) =
0.2 + 0.01e−0.1k sin(0.1k) whose trajectory is shown in
Fig. 3; the input of reference model r(k) = 4; the ini-
tial condition of the satellite system is assumed to be
[−0.5 −0.3 0.3 −0.3]T; and the initial condition of the
reference model is 0.5.

In order to demonstrate the effectiveness of our pro-
posed method, the following two cases listed in Table 1
are considered, and the corresponding controllers obtained
from Theorem 1 together with the Algorithm by utilising
the Matlab LMI Toolbox come next.

In Table 1, the controller of CASE 1 is called standard
controller because of the system operating in a normal con-
dition, while the controller of CASE 2 with consideration of
SAFs is called fault-tolerant controller.

From Fig. 4, one can see obviously that the output of the
plant (y) can track the output of the reference model (yr)
r rules of use; O
A

 articles are governed by the applicable C
rea
Table 1 Controller parameters in different cases

CASE Condition Controller

K1 = [−0.2154 − 0.0413 − 0.6324 − 0.4290]
1 �̄ = 1, σ = 0 KSC K2 = 0.0478

K3 = −0.0041
K1 = [−0.5308 − 0.1015 − 1.5685 − 1.0589]

2 �̄ = 0.4, σ = 0.05 KFTC K2 = 0.1175
K3 = −0.0101
IET Control Theory Appl., 2013, Vol. 7, Iss. 10, pp. 1370–1376
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Fig. 4 Outputs by using KSC under Condition 1

Fig. 5 Control input u(k) by using KSC under Condition 1

Fig. 6 Control input u(k) by using KFTC under Condition 2

precisely with zero SSE by using the SC in Case 1 listed
in Table 1. Comparing Fig. 5 with Fig. 6, we can find that
the actuator is affected by the SAFs, nevertheless, the output
y can still track the output yr precisely over the time under
Condition 2, which is shown in Fig. 7. On the contrary, if the
corresponding continuous-time system (34)–(36) by using
IET Control Theory Appl., 2013, Vol. 7, Iss. 10, pp. 1370–1376
doi: 10.1049/iet-cta.2012.0003

 

Fig. 7 Outputs by using KFTC under Condition 2

Fig. 8 Outputs by using the controller in [6] under Condition 2

Fig. 9 Outputs by using the controller in [6] under Condition 1

the controller in [6] under Condition 2, it renders the system
unstable (see Fig. 8). From this point of view, we conclude
that it is necessary to design a fault-tolerant controller for
the system, which is subject to SAFs.
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Fig. 10 Control input u(t) by using the controller in [6] under
Condition 2

Now we study the influence of the non-zero inputs. From
Fig. 4, it can be seen that the steady tracking-output is of
zero SSE by using our proposed method when the external
inputs (ω and r) tend to non-zero constants, while a big SSE
between the output y and yr may be generated by using the
method in [6] for system (34)–(36) under the same condi-
tions (see Fig. 9). Since the criterion given in Theorem 1 is
MSAS, the trajectory in Fig. 7 is oscillated near the reference
output yr under Case 2.

It should be pointed out that the big controller gains are
not suggested in practice. since the actuator force will be in
a saturated state while its amplitude is up to a certain lever.
Moreover, it can arouse a tremendous noise as well, which
could destabilise the system. Comparing the control force
in Fig. 10 with the one in Figs. 5 and 6, one can see that
the controller designed by our method is more suitable for
design requirements.

5 Conclusion

This paper has investigated the problem of network-based
fault-tolerant tracking control for the discrete-time system
with both NEIs and SAFs. A new SAFs model is developed
by introducing a rand diagonal matrix, which can charac-
terise the actuator fault in each channels and cover several
classes of well-studied fault model. By borrowing the idea
of integrated control method, a novel control scheme is
proposed, which can make the system be with zero SSE
under NEIs. Based on Lyapunov function approach and
cone complementary linearisation (CCL) algorithm, the con-
troller parameters can be solved by LMI Toolbox easily. A
numerical example is given to show the effectiveness of our
proposed method.
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